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Abstract: Partial syntheses of two 8-vinyl-derivatives (3 and 6) of chlorin-eg trimethyl ester 5
are reported; in certain organisms, 8-de-ethyl-8-vinylchlorophyll-a 8 has been proposed to be a
biosynthetic precursor of the plant chlorophylls and of the bacteriochlorophylls.
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Divinyl derivatives (e.g. 1) of the green plant pigment chlorophyll-a 2, bearing a vinyl
instead of an ethyl group at position-8, have recently been found to be intermediates during
chloroplast biogenesis in plants and bacteria.}2 Based on Woodward's synthesis3 of 2 a key
intermediate in any synthetic approach to 8-vinyl-derivatives of the plant chlorophylls would be
the 8-de-ethyl-3,8-divinyl-chlorin-eg trimethyl ester 3; indeed, this compound was first found as
a serendipitous by-product from a dehydration reaction of the chlorin-eg diol 4, obtained by
photo-oxygenation of a chlorin-eg phlorin.4 We now report efficient synthetic approaches, from
chlorin-eg trimethyl ester 8, to 8-de-ethyl-8-vinylchlorin-eg trimethyl ester 3 and 8-de-ethyl-8-
vinylmesochlorin-eg trimethyl ester 6.

1: R® = CH=CH, 3: A%= R® = CH=CH, 4: R% = CH=CH,
2R8 =&t 5: R® = CH=CH,, R®= Et 8:R3=Et

6: R3 = Et, R® = CH=CH,

7:R%= R®=Et

Chlorin-eg-trimethyl ester 5 is readily available® from chlorophyll-a found in Spirulina
pacifica alga.6 Catalytic hydrogenation of the 3-vinyl group in 5 gave mesochlorin-eg trimethyl
ester 7, and following reaction with OsOj4 to afford the 7,8-diol 8,7:8 dehydration? in hot toluene
containing pyridinium p-toluenesulfonate (PPTs) gave the 3-ethyl-8-vinylchlorin-eg trimethyl
ester 6, a constitutional isomer of 8, in 60% yield (40% overali).
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Scheme 1: Synthetic route to 8-de-ethyl-8-vinylchlorin-eg trimethyl ester 3

Reaction Conditions: 1: 1. OsO4/py, THF, 0°C, 30 min. 2. NaHSO3, MeOH/H20, rt, 30 min. ii
NalO4/Si0O9, THF/H20, rt, 20 min. Hi: 1. OsO4/py. THF, rt, 10 d. iv: HC(OMe)3/p-TsOH, MeOH, reflux,
30 min. v: 1. OsO4/py, THF, rt, 6 d. vi: 25 Torr, 90°C, 5 d. vii: Ph3P*MeBr-/NaN(SiMeg)2, THF, reflux,
90 min, then 14, 50°C, 30 s.

Synthesis of the 3,8-divinylchlorin-eg 3 was more difficult because the 3-vinyl group of
chlorin-eg trimethyl ester 8 is the most reactive double bond in the molecule. In order to carry
the vinyl through the reaction sequence, it must be protected before the OsO4 reagent can
regioselectively8 attack the C7-C8 double bond in 5. Though we have used the (2-chloroethyl)
substituent for reversible vinyl group protection in a number of our syntheses, !0 in the present
series the best method for vinyl-protection involved preparation of diol 9 by treatment of 8 with
0s04/pyridine, followed by glycol cleavage using sodium periodate on silica, to give the 3-formyl-
chlorin-eg 10 (Scheme 1). This compound was then converted into its dimethylacetal 11 by
treatment with trimethyl orthoformate in methanol (and p-toluenesulfonic acid as catalyst). The
7.8-diol 12 was then obtained® in excellent yield by use of OsO4/pyridine. The electron-
withdrawing effect of the formyl group in 3-formyl-diol 13, obtained by osmium-oxidation of 10,
appeared to favor pinacol rearrangement, so the dehydration of acetal-diol 12 was accomplished
in moderate yield by heating under vacuum. Under these conditions the 8-vinyl group was
formed with concomitant cleavage of the acetal to give the 3-formyl-8-vinylchlorin-eg 14; a Wittig
reaction between 14 and methylene triphenylphosphorane!! easily afforded 3.12.13
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Figure 1A shows the vinyl region in the proton NMR spectra (300 MHz) of chlorin-eg
trimethyl ester; beneath this can be seen the vinyl proton spectra of the 3-ethyl-8-vinylchlorin eg
isomer 6 (Fig. 1B) and the divinyl compound 3 (Fig. 1C). Figure 1C, to a first order
approximation, appears as a composite of the two monovinyl isomers.
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Figure 1: IH-NMR Spectra (300 MHz, vinyl region only) in CDCl3 of: {A) chlorin-eg trimethyl ester B; (B) 8-de-ethyl-8-
vinylmesochlorin-eg trimethyl ester 6; (C) 8-de-ethyl-8-vinylchlorin-eg trimethyl ester 3.

Transformation of 3 and 8 into the corresponding pheophorbides and chlorophylls14 is in
progress, and will be reported in a full paper.
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